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The MiniBooNE Excess
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* MiniBooNE was a short baseline oscillation experiment
« Saw a ~30 v _- like excess between 200 & 600 MeV
* MiniBooNE'’s result is in tension with global 3+1 model fits
» Follow up with MicroBooNE! Why MicroBooNE?
MiniBooNE MicroBooNE

 Significant y/e- mis-id « Same beam, similar oscillation

background parameters, new detector tech
HB@ © 0 =0 * y/e mis-id is much improved ,




The MicroBooNE Experiment

UbooNE field cage |

being inserted into | ' S| T —— (] | S e L i
Cryostat (left) 2l | T zﬁ-..--;:;-: —

Booster v beam ' o R Y -
@ FNAL (right) Y ) | / P
I e | i . By .. DUNE v beam
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Micro Booster Neutrino Experiment

85 ton active volume Liquid Argon Time
Projection Chamber

Located at FNAL on Booster Neutrino Beam
v, —V, appearance experiment

Running very smoothly so far!




The MicroBooNE Detector

Anode planes: _ U
UV, Y F /
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MicroBooNE Simulation
Preliminary

Cathode

MicroBooNE Simulation
Preliminary

4 =
g -
g 3 mm spacing
/ H MicroBooNE Simulation
Q / < Ednﬂ Preliminary
Q)Q’rb/ \ Wire
7 Induction Collection “Design and Construction of the MicroBooNE Detector”

JINST 12, P0O2017 (2017)




Deep Learning With CNNs

For our purposes, Deep Learning means using convolutional neural
networks (CNNSs)

CNNs were primarily developed for image recognition.

MicroBooNE produces high resolution images with specific patterns we
look for. Ideal for CNNSs!

Two types of interest, classification and semantic segmentation

—

age FCN-8s Deeplab CRF-RNN Ground Truth
b A N
.o
= i
‘- m— n
i o

B-ground Aeroplane Bicycle Bird Boat Bottle
Car Cat Chair Cow Dinging-table Dog

A CNN trained to classify
an image by what it
contains (left)

A CNN trained to classify
different pixels in an

image by type (right)

ke - 4
- - - R - |
. — 3 = % el 3
ri usnr C rry Mad scar c
Vel e aric al juirre onke
grille ushr rape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri " H
fil ine | dead-man's-fingers currant howler monkey Motorbike Potted-Plant Sheep Sofa

re engin. T¥Monitor
Example of CNN classification, from “ImageNet Example of semantic segmentation, from “Conditional
uBOO Classification with Deep CNNs”, NIPS (2012) Random Fields as Recurrent NNs”, ICCV (2015)
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Signal Definition

- Looking for v, appearance signal and v, to constrain background

* We choose subset of events producing one lepton and one proton
» Lepton KE > 35 MeV, Proton KE > 60 MeV

» Chosen for low background (only intrinsic v, , constrain with v ) and

simple topology 10 cm =

K.E.. =320 MeV
K.E.p =123 MeV »

Z
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A lelp Ve Interaction (top) MicroBooNE Simulation MicroBooNE Simulation MicroBooNE Simulation
Preliminary Preliminary Preliminary

Alulpv, interaction (bottom)

+ KE.,.=73MeV
“"-\ K.E.; =266 MeV
\
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o
\ ‘“"‘H

P

MicroBooNE Simulation MicroBooNE Simulation MicroBooNE Simulation
Preliminary Preliminary Preliminary



Reconstruction Chain

( PMT Pre-Cuts )

}

Cosmic Tagging
Full analysis chain is a hybrid of & ROI Finding
Deep Learning and traditional techniques l

Track vs. Shower
Pixel Labeling

( 3D Vertex Reco )

|

Particle ID]

HB@<Z ;

Deep Learning Algo €




Reconstruction Chain

[ PMT Pre-Cuts] « Set of optical cuts to reject low

energy background and noise

. - Y - > 0 -
[Cosmm Taggl ng] Retains > 95% of neutrino events

o (From MC)
& ROI .F'n INg * Rejects > 75% of background

(From off beam data)

Track vs. Shower
Pixel Labeling
( 3D Vertex Reco )

( Particle ID]
MBOONE _ |




Reconstruction Chain

( PMT Pre-Cuts ] « Images still contain many cosmic
. tracks

« Neutrinos interactions are small
Cosmic Tagging compared to whole image
& ROI Finding | - Tag cosmic tracks and isolate

regions associated with the neutrino

Track vs. Shower
Pixel Labeling
( 3D Vertex Reco )

[ Particle ID]
MBOONE _ 9




Cosmic Tagging

Cosmic tracks everywhere!
AN\

The v, event from
a few slides ago

Cosmic Data : Run 6280 Event 6812 May 12th, 5016

More down here!



Cosmic Tagging

* We tag tracks that cross the TPC boundary
- Top / Bottom: Track deposits charge on triplet of wires meeting at

an edge

~ Upstream / Downstream : Track deposits charge on first / last wire
in 'Y plane

> Anode / Cathode : Crossing have a specific AT between PMT
flash and wire signal

« Construct full track using 3D
path finding matched to
boundary pts

HB@ 1
ey




Regions of Interest

e Generate regions of interest (ROIs) by drawing 3D box around
remaining pixel clusters

L]
-

4800
4500
4200
3900
3600
3300
3000
2700
2400

MicroBooNE Simulation
Preliminary .

ve le-1p

K.E.e =563 MeV
K.E.p =110 MeV
AR =0.33 cm

U Plane




Reconstruction Chain

[ PMT Pre-Cuts j

Cosmic Tagging
& ROI Finding

Track vs. Shower
Pixel Labeling

( 3D Vertex Reco )

[Particle ID]
MBOONE _ 1




Pixel Labeling

* We seek to separate track and shower clusters to aid in vertex
reconstruction

 First use of Deep Learning, a semantic segmentation network
labels each pixel as shower-like or track-like
» Overall labeling accuracy > 90%

. p

/ e shower

W 4 MicroBooNE MicroBooNE

Simulation ' : - lation
Track-like Simulatic

Track-like Preliminar .
Shower-like Truth label reliminary g ghower-like SSNet output Preliminary




SSNet Accuracy on Data

« Use a sample of CC 1t° events to test SSNet performance on
protons, muons, and gammas in data

* In the example below, the proton and muon are correctly
labeled as tracks. The two y showers are mostly labeled as
shower type, with the exception of the trunk

e SSNet output . 30 cm

cosmic -

Vu _-
<< BNB Data : Run 5419 Event 6573 March 14th, 2016 < BNB Data : Run 5419 Event 6573 March 14th, 2016

MicroBooNE Public Note, “Study Towards an Event Selection for Neutral Current Inclusive
Single 1° Production in MicroBooNE”

u@ 15




Reconstruction Chain

( PMT Pre-Cuts ]

Cosmic Tagging
& ROI Finding

Track vs. Shower
Pixel Labeling
C3D Vertex Reco)

( Particle ID]
MBOONE _ )




vV, Vertex Reco

« Look for intersections of track-like and shower-like pixel clusters
« Correlate these intersections across planes

e Scan 3D region around points to find best match for where shower
and track meet across all planes
C'd
®

2




v” Vertex Reco

e Per plane, create 2D vertex seeds at any kink points
> Find defects in convex hull
> Find intersections of component linear fits

e Scan space around each 2D seed using an angular metric to find
best vertex point

« Combine information across planes, if vertices across planes are
3D consistent, claim a vertex at that point

280( T ] 280[ T T T T ] 280(

MicroBooNE leulatlon MicroBooNE Simulation MicroBooNE Simulation

260 St { 260/ s
Preliminary Preliminary Preliminary
240
defect point |l PCA crossing
[} [
= | o 200/
3 2
1 180}
160
140/ =
140 60 480 500 20 440 a60 480
Tll‘l’ll’ [6 tlcksl Time [6 ticks] Time [6 ticks]

HB@<Z 18




Reconstruction Chain

( PMT Pre-Cuts ]

Cosmic Tagging
& ROI Finding

Track vs. Shower
Pixel Labeling

( 3D Vertex Reco )

Particle IDJ




Particle Identification

e Second stage of chain where Deep Learning is used

 After 3D vertex reconstruction, cluster pixels associated with a
given track/shower emerging from a vertex

» Feed these individual clusters to a CNN trained to do particle type
identification (HighRes GooglLeNet)

> Note this differs from previous net which was trained only to
broadly classify pixels by track or shower

200

MicroBooNE Simulation Particle Correct 1D
180 Preliminary Prot

S e 77.8 +0.7%  substantial
60| e - improvement over
.§ ‘_"H‘E . Y 83.4 £ 0.6%  piniBooNE which
140 . _ o offered no similar
* 4'

| KR ,=303Mev. Electron - 71.0+0.7%

K.E. =157 MeV Sho“'er
100

360 380 400 420 440 460 480 p 9 1 . 2 i 0 . 5 O/O

Time [6 ticks]

BO = JINST 12, P03011 (2017)
uE . 20
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Processed Event Example

MicroBooNE Simulation

Preliminary

120 CIm

ve le-1p

K.E.e =563 MeV
K.E.p =110 MeV
AR=0.33 cm

Y

S ST — T — T — T — B — B — B — B — BT — i S




Processed Event Example

EJE88ERE83538B88u8845E

MicroBooNE Simulation
Preliminary | /|

120 cm
 A—

ve le-1p

K.E.e =563 MeV
K.E.p =110 MeV
AR=0.33 cm

\ 4




Summary

 Fully automated reconstruction chain for performing low energy
analysis. Includes a mix of traditional and Deep Learning algos

« Efficiency and systematics studies in progress

* Progress will inform on low energy excess and provide tool
development for future LArTPC programs

HB@<Z 23




Thank You!

Questions?

24






More Detail on Deep Learning

- o

httDs;ﬁww.voutube.comiwatc h?v=AgkflQ41GaM

e Convolutional neutral networks have several important properties
» “Neurons” scan over the image looking at a limited set of pixels at each point
» They “learn” local, translationally invariant features

» Each layer of neurons builds on the features found by the previous ones to reach
increasing levels of complexity/abstraction

e In the above, the black-and-white boxes show the “activation” of
neurons in response to the images; the neuron highlighted on the
right responds to faces, while the one on the left responds to text

u@ 26




Optical PreCuts

beam window

e

A S 3 A A
o [RCA E AL SR A s I
_ AN IN- | N<
j\. N rQ\-.__ j\-
S— f\_ - — .4[\'\._
_j\_ — J’\- f\ j-\\-. j\_
timeh time.; time-; time-;
Keep: All possible Reject: Random, Reject: In-time flash  Reject: PMT-based
neutrino events single-photoelectron  caused by Michel noise
noise electron, from the

decay of pre-beam
cosmic muon

HB@<Z 27




Optical PreCuts

beam window

«—

A il 3 A A
i [RCA B AL R A d [RoA-
NI % A _ f\h Nd)
IANE A = __ I~ AN %“‘- __
time time time time

* Reject: Random, single-photoelectron noise (~200 kHz)
» No time correlation between these single-photoelectron pulses
» Require 20 photoelectrons in 93.75 ns — this becomes the definition of a “signal”

e Reject: In-time flash caused by Michel electron, from decay of a cosmic muon

» Require no signal for 2 ps before the beam window

* Reject: PMT-based noise
» Limit the total amount of the light collected by a single PMT to <60% of the total light

e Keep >96% of neutrinos (based on simulations)
e Reject >75% of background (based on rejection of off-beam data)

HB@<Z 28




Cosmic Tagging

| .
\\L/To

p | Bottom

Anode /
= Cathode

Upstream /
Downstream




CNN PID Performance

Sample Electron Photon Muon Pion Proton
Detection | 77.8 +/- | 83.4+- | 897+ | TLO+/- | 91.2 +-
e 0.7 0.6 0.5 0.7 0.5

Most]
m?ﬁ,&% Y (19.9) | e (15.0) m(5.4) U (22.6) U (4.6)
MisID (%

HB@<Z
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